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By using a perturbation approach, we investigate dynamic effects on nonlinear alternating current �ac�
responses in electrorheological �ER� fluids under an ac or direct current electric field. We show that the
dynamic effect due to a shear flow, which exerts a torque on ER particles and thus leads to the rotation of the
particles about their centers, plays a significant role in the responses. Our results can be well interpreted in the
dielectric dispersion spectral representation, and they offer a convenient method to determine the relaxation
time and rotation velocity of ER particles by measuring the nonlinear ac responses.
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I. INTRODUCTION

An electrorheological �ER� fluid �1,2� contains polariz-
able particles suspended in a liquid of low dielectric con-
stant. The rapid field-induced aggregation and the large an-
isotropy of ER fluids render these materials potentially
important for applications. In a realistic situation, the fluid
flow exerts force and torque on the suspended particles, set-
ting the particles in both translational and rotational motion.
For instance, the shear flow in an ER fluid exerts a torque on
the particles, which leads to the rotation of particles about
their centers �3–10�. Experiments �7� showed that the in-
duced interparticle forces between rotating ER particles are
quite different from the values predicted by the existing theo-
ries that have not included the motion of particles. Wan et al.
�8,9� theoretically investigated this kind of rotation and
pointed out that the rotation-induced displacement of the po-
larization surface charge reduces the interaction forces be-
tween the ER particles. Most recently, this was demonstrated
in experiments �11�.

When a suspension consisting of dielectric particles hav-
ing nonlinear characteristics is subjected to an alternating
current �ac� field with angular frequency �, the electric re-
sponse will generally consist of ac fields at frequencies of the
higher-order harmonics �12–21�. We shall show that, if the
suspended particles in the suspension rotates with angular
frequency �1, the desired frequencies of the higher-order
harmonics will become more abundant due to the coupling
between � and �1. We shall also show that, once a direct
current �dc� electric field is applied to such suspensions con-
taining rotating particles with �1, harmonic signals can also
be detected at various frequencies like �1 and 3�1.

In this work, we shall develop a perturbation approach
�13,22� to investigate the dynamic effect due to a shear flow
on nonlinear ac responses in ER fluids under an ac or dc
electric field. This work is developed on the single-particle
scale in the dilute limit. It is found that this kind of dynamic

effect plays a significant role in the responses. According to
our results, it seems possible to detect some physical param-
eters �e.g., relaxation times and rotation velocities� of ER
particles, by measuring the nonlinear ac responses.

This paper is organized as follows. In Sec. II, based on a
perturbation approach, we present the formalism for the non-
linear ac responses of a rotating ER particle without or with
dispersion. This is followed by Sec. III where numerical re-
sults are presented under different conditions. The paper ends
with a discussion and conclusion in Sec. IV.

II. FORMALISM

A. Without dispersion

We first consider a particle in an ER fluid under an ap-

plied external ac electric field E f0=E0cos��t�Ẑ�E0cos��t�.
The shear flow in the ER suspension will give the particle a
torque, which leads it to get a rotational motion about its
center �see Fig. 1�. We assume that the angular velocity

caused by shear flow is �1Ŷ. Then if we rotate with the
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FIG. 1. �Color online� Schematic graph showing the rotation
coupling �Eq. �1�� between an external ac electric field with angular
frequency � and a rotating ER particle with �1.
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particle, the particle will seem to be at rest, and it experi-
ences an electric field written as �see Fig. 1�

E f =
1

2
e−it�1�e−it� + eit��E0. �1�

While the suspended particles have a nonlinear dielectric
constant, the nonlinear constructive relation between the
electric displacement D1 and the local electric field E1 is
defined as

D1 = �1E1 + ��E1�2E1 � �̃1E1, �2�

where �1 denotes the linear dielectric constant of a suspended
particle, and � is the third-order nonlinear coefficient of the
particle. It is worth noting that owing to the spherical sym-
metry under consideration, even-order nonlinearity disap-
pears naturally. For convenience, we adopt the definition
�E1�2=E1 ·E1�E1

2. Throughout the work, only weak nonlin-
earity is considered. Next, the local electric field inside a
particle is given by

E1 =
3�2

�1 + �E1
2 + 2�2

E f . �3�

Here �2 represents the �linear� dielectric constant of the host
medium �e.g., silicone oil�. Owing to the small nonlinear
coefficient �, we can expand E1 by taking �E1

2 as a small
perturbation. In the meantime, we shall ignore the smaller
terms. Thus, we get

E1 =
3e−it��+�1��1 + e2it���2

2��1 + 2�2�
E0

−
3e−it��+�1��1 + e2it���2�E1

2

2��1 + 2�2�2 E0. �4�

And the first term of the right part of Eq. �4� is the linear
part. Because this first term is much larger than the second
one �i.e., nonlinear part�, we can take it as E1 back to Eq. �4�.
Then E1 takes the form

E1 =
3e−it��+�1��1 + e2it���2E0

2��1 + 2�2�

−
27e−3it��+�1��1 + e2it��3�2

3�E0
3

8��1 + 2�2�4 . �5�

By expanding this form of E1���0�, we obtain the har-
monic terms of various frequencies:

E1 = E�+�1
e−it��+�1� + E�−�1

eit��−�1� + E3�+3�1
e−3it��+�1�

+ E3�−3�1
e3it��−�1� + E�+3�1

e−it��+3�1� + E�−3�1
eit��−3�1�,

�6�

where

E�±�1
=

3�2E0

2��1 + 2�2�
,

E3�±3�1
= −

27�2
3�E0

3

8��1 + 2�2�4 ,

E�±3�1
= −

81�2
3�E0

3

8��1 + 2�2�4 . �7�

On the other hand, the induced dipole moment

P = �2
�1 + �E1

2 − �2

�1 + �E1
2 + 2�2

a3E f �8�

can be treated in the same way. In Eq. �8� a denotes the
radius of the particle. Then we expand P���0� by taking
�E1

2 as a perturbation and ignore the smaller terms. As a
result, we obtain

P =
a3e−it��+�1��1 + e2it����1 − �2��2

2��1 + 2�2�
E0

+
3a3e−it��+�1��1 + e2it���2

2�E1
2

2��1 + 2�2�2 E0. �9�

Now the linear term �namely, the first term� of E1 in the
right-hand side of Eq. �4� is introduced into Eq. �9�. Then we
obtain

P =
a3e−it��+�1��1 + e2it����1 − �2��2E0

2��1 + 2�2�

+
27a3e−3it��+�1��1 + e2it��3�2

4�E0
3

8��1 + 2�2�4 . �10�

This can be rewritten as

P = P�+�1
e−it��+�1� + P�−�1

eit��−�1� + P3�+3�1
e−3it��+�1�

+ P3�−3�1
e3it��−�1� + P�+3�1

e−it��+3�1� + P�−3�1
eit��−3�1�,

�11�

where the harmonic coefficients of various frequencies are
given by

P�±�1
=

a3��1 − �2��2E0

2��1 + 2�2�
,

P3�±3�1
=

27a3�2
4�E0

3

8��1 + 2�2�4 ,

P�±3�1
=

81a3�2
4�E0

3

8��1 + 2�2�4 . �12�

If �=0, we can easily sum the terms of the same fre-
quency up. So we achieve

E1
��=0� = E�1

e−it�1 + E3�1
e−3it�1, �13�

where

E�1
=

3�2E0

�1 + 2�2
,

E3�1
= −

27�2
3�E0

3

��1 + 2�2�4 . �14�

And P��=0�is given by
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P��=0� = P�1
e−it�1 + P3�1

e−3it�1, �15�

where

P�1
=

a3��1 − �2��2E0

�1 + 2�2
,

P3�1
=

27a3�2
4�E0

3

��1 + 2�2�4 . �16�

Comparing Eq. �6� to Eq. �13�, and Eq. �11� to Eq. �15�, it
is evident that harmonic signals can be detected at more fre-
quencies due to the coupling of the frequencies � and �1.
Since we can detect each harmonic coefficient in experiment,
it is easy to determine the angular velocity caused by shear
flow with Eq. �12� as long as the external field frequency � is
known.

B. With dispersion

Until now, the dielectric constants �1 and �2 that have
been used are both real numbers, that is, we have not taken
into account the relaxation. To include the relaxation, one is
allowed to see them as complex numbers �23,24�, and they
can be described as

�1 = �̄1 − i�̄1/�0,

�2 = �̄2 − i�̄2/�0, �17�

where both �̄ and �̄ are real numbers, and they represent the
real dielectric constant and the conductivity of the particle,
respectively. In Eq. �17�, �0 denotes the angular frequency
whose details can be found below. In this case, the induced
dipole moment should be �25�

P = �̄2
�1 + �E1

2 − �2

�1 + �E1
2 + 2�2

a3E f . �18�

Because �̄2��̄1 in real situations, we are allowed to set �̄2
=0 �i.e., �2= �̄2� in the following derivation as well as the
numerical calculations presented in Sec. III B. And here, in
the third-order harmonic terms, according to the mixing
theory �26�, the high-order harmonic output is combined
with one input frequency and two mixing frequencies, by
using basic angular frequencies ��+�1� and ��−�1�. Spe-
cifically, we can set 3�±3�1=3��±�1� and �±3�1

=2��±�1�− ����1�. As a result, the angular velocity �0 in
Eq. �17� is replaced by harmonic angular velocities in the
same way. So the harmonic terms ofP���0� are given by

P�±�1
=

a3�̄2��̄1 − i�̄1/�� ± �1� − �̄2�E0

2��̄1 − i�̄1/�� ± �1� + 2�̄2�
,

P3�±3�1
=

27a3�̄2
4�E0

3

8��̄1 − i�̄1/�� ± �1� + 2�̄2�3��̄1 − i�̄1/3�� ± �1� + 2�̄2�
,

P�±3�1
=

81a3�̄2
4�E0

3

8��̄1 − i�̄1/�� ± �1� + 2�̄2�2��̄1 + i�̄1/�� � �1� + 2�̄2���̄1 − i�̄1/�� ± 3�1� + 2�̄2�
. �19�

If �=0, based on Eq. �16� we obtain

P�1
=

a3��̄1 − �̄2 − i�̄1/�1��̄2E0

�̄1 − i�̄1/�1 + 2�̄2

, �20�

P3�1

=
27a3�̄2

4�E0
3

��1̄ − i�̄1/�1 + 2�̄2�3��̄1 − i�̄1/3�1 + 2�̄2�
.

�21�

It is worth noting that in actual use, only the real parts of the
harmonic terms of the induced dipole moment �Eqs.
�19�–�21�� can be detected in experiments. Thus, we shall
compute these real parts only in the following numerical
calculations.

III. NUMERICAL RESULTS

A. Without dispersion

We investigate the cases without dispersion in Figs. 2–5.
In Fig. 2, for an ac electric field with angular frequency �
and a rotating ER particle with �1, we have numerically
calculated the harmonic responses of induced electric fields
�a�, �d� E�±�1

, �b�, �e� E3�±3�1
, and �c�, �f� E�±3�1

. If dielec-
tric the constants �1 and �2 are given, higher nonlinear char-
acteristics yield stronger harmonic responses. In other words,
the magnitude of the harmonic responses reflects the strength
of the nonlinear characteristics, as already experimentally re-
ported by Klingenberg �12�. In the meantime, we find that
increasing �1 leads to decreasing third-harmonic responses
�see Figs. 2�a�–2�c��. In contrast, increasing �2 causes the
harmonic response to increase. Similar behavior can be
found in Fig. 3 where a dc external electric field ��=0� is
applied. These can be understood well from the local field
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effect �Eq. �3��. In detail, based on Eq. �3�, it is apparent that
increasing �1 leads to decreasing local electric field E1. How-
ever, increasing �2 causes E1 to increase. In Figs. 4 and 5,
except for their first panels �i.e., Figs. 4�a� and 5�a��, all other
panels show framework similar to the corresponding panels
in Figs. 2 and 3. In Figs. 4�a� and 5�a�, we find that increas-
ing �1 yields increasing basic harmonics.

B. With dispersion

Figure 6 displays the harmonic responses of induced di-
pole moment versus the angular frequency �1 of the rotating
particle, for the external electric field with different frequen-
cies �. For P�+�1

, P3�+3�1
, and P�+3�1

�left panels�, increas-
ing �1 yields decreasing P�+�1

, but increasing P3�+3�1
and

P�+3�1
. Inverse results appear for P�−�1

, P3�−3�1
, and P�−3�1

�right panels�, due to the subtraction of the particle rotation
frequency from the external field frequency. In case of a dc
electric field, we can investigate the effect of �1 on the har-
monic responses �see Fig. 7�. Figure 7�a� predicts the same
result as Fig. 6�a�.

By analyzing Eq. �21�, we find that, when

�1 = 1.124
�̄1

�̄1 + 2�̄2

, �22�

a maximum value should appear in Re�P3�1
�, as displayed in

Figs. 7�b� and 8 indeed. Here Re�¯� means taking the real
part of �¯�. In fact, this value could appear at the frequency
�1=�1

* that satisfies the following known relation �27�:

��1
* = 1. �23�

According to Eq. �22�, we obtain

� =
�̄1 + 2�̄2

1.124�̄1

=
�MW

1.124
. �24�

Here the relaxation time � is determined by the details of the
relaxation process, and the Maxwell-Wagner relaxation time
�MW is based on the Maxwell-Wagner theory of leaky dielec-
trics since the relaxation process originates from the finite
conductivity of the particle and host medium �27�. In Table I
the � was calculated according to Eq. �24�, and �1

*, which
was extracted from the curves of Fig. 8, is the frequency at
which Re�P3�1

� reaches a maximum.
In Figs. 7�b� and 8, we show that the harmonic response

can pass through zero �i.e., from negative to positive number
as �1 increases�. To understand this, we invoked the dielec-
tric dispersion spectral representation �DDSR� �28,29� for the
harmonics. The DDSR enables us to express the harmonics
in terms of a series of subdispersions, each of which has
analytic expressions for the dispersion strengths and their
corresponding characteristic frequencies expressed in terms
of the various parameters of the model. Let us define two
parameters s and t,

s = �1 −
�̄1

�̄2
�−1

, t = �1 −
�̄1

�̄2
�−1

.

In case of the parameters adopted in the present work, �̄1
=20�0, �̄2=2.5�0, and �̄2=0, the numerical values of s and t
are, respectively, −0.142 857 and 0. Thus, for the fundamen-
tal response, the real part will just be a monotonically de-
creasing function, as displayed in Fig. 7�a� indeed. For the
third-harmonic response, it can be expressed as five terms in
the DDSR, namely, constant �or �s−1/3�0�, �s−1/3�−1, �s

FIG. 2. �Color online� Without dispersion. For an ac electric field ���0�, the harmonic responses of the local electric field E1 versus the
dielectric constants �a�–�c� �1 and �d�–�f� �2. Here �0 denotes the dielectric constant in vacuum. Parameters: �a�–�c� �2=2.5�0; �d�–�f� �1

=20�0.
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−1/3�−2, �s−1/3�−3, and �s−1/3�−4. Thus, the real part of
the third-harmonic response should possess a peak at some
peak frequency. At the same time it can cross zero and be-
comes positive at higher frequencies because s	0 and t=0.
Also, the apparent shift of the peakfrequency �1

* from 1/�MW
to 1 /� in Eq. �23� is due to the unconventional terms �29� in
the DDSR.

Figure 7�b� shows that the nonlinear characteristic does
not affect �1

*. Actually, �1
* can be affected by the linear re-

sponses of the particles only, as shown in Eq. �23� already.
Thus, we investigate the effect of �̄1, �̄1, and �̄2 on the peak,
see Fig. 8. It is shown that all the quantities have an effect on
the �1

*. Especially, decreasing �̄1 or increasing �̄1 or �̄2
makes the �1

* redshifted �namely, located at lower frequen-
cies�. Consequently, in experiments, based on the observed
peak frequency�1

*, we can conveniently determine the relax-
ation time � �=1/�1

*�. That is, our results offer an effective
way to determine the relaxation time, which seems up to now
a challenge. In addition, since we can detect each harmonic
response at different �1 in experiment, the corresponding
angular velocity �1 of particles caused by shear flow is ob-
tained directly.

Klingenberg experimentally studied the nonlinear ac re-
sponses �harmonics� of electrorheological fluids �12�. Very

interestingly, he experimentally showed that the harmonics
of the electric current is caused to increase while the external
electric field increases, which is qualitatively in agreement
with our numerical results obtained from the local electric
field and the induced dipole moment �see Figs. 2�b�, 2�c�,
2�e�, 2�f�, 3�b�, 3�d�, 4�b�, 4�c�, 4�e�, 4�f�, 5�b�, 5�d�, and
7�b��. In addition, by using this kind of perturbation ap-
proach, Wei and coauthors also investigated nonlinear ac re-
ponses of composite materials �20,21�.

It turns out generally difficult to give a full account of all
the numerical results in simple physical terms. However, we
already explained the behaviors of the harmonic responses
�at least partly� by the local field effects, aided by the spec-
tral representation �see Ref. �17��. This is due to the fact that
the spectral representation can reveal the dominant contribu-
tion through the self-consistent approach.

IV. DISCUSSION AND CONCLUSION

We have performed a perturbation approach to investigate
nonlinear ac responses in ER fluids which are subjected to an
ac or dc electric field. Our focus is on the dynamic effect due
to a shear flow, which exerts a torque on ER particles and

FIG. 3. �Color online� Without dispersion. Same as Fig. 2, but for a dc electric field ��=0�.
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thus leads to the rotation of the particles about their centers.
In real ER fluids, there is always �1
�2 �2�. In this work,

we used �1
10�0 because �2 is often �2–3�0�. It is known
that ER fluids are more stable in low frequencies than in high
frequencies. In general, the real frequency in use can often be
smaller than 104 Hz �or 2��104 rad/s� �30�. Thus, in our
calculations, we take the range for frequencies �
=102.8–103.2 rad/s and �1
40 rad/s, in which the feature
of a frequency-dependent ER activity has been included �30�.

If we adopt smaller �1 or �, the qualitative results we have
achieved remain unchanged.

Strictly speaking, the condition �=0 does not refer to the
dc case, because the particle is actually rotating and �1 �an-
gular velocity caused by shear flow� is nonzero. Thus in this
case we still need to study the ac response.

Throughout this work, only lower-order harmonics have
been discussed. In fact, higher-order harmonics can also be
studied as long as we keep more terms in Eqs. �4� and �9�.

FIG. 4. �Color online� Without dispersion. Same as Fig. 2, but for the harmonic responses of induced dipole moment P.
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However, the strength of the higher-order harmonics �e.g.,
fifth order� is often several orders of magnitude smaller than
of the lower-order terms. To some extent, it is more attractive
to detect the lower-order harmonics. As a matter of fact,
higher-order harmonics can arise from different origins. Let
us take the fifth harmonic as an example. They can be in-
duced to appear by third-order nonlinearity �see Appendix
A�, that is, lower-order nonlinearity can induce higher-order
nonlinear responses. On the other hand, fifth harmonics can
be induced to appear by fifth-order nonlinearity �see Appen-
dix B�. In the two appendixes, we derived the expressions for
harmonic coefficients for particles without dispersion. Fol-
lowing Sec. II B, this can be directly extended to deal with
particles with dispersion.

It would be interesting to see what happens if one takes
into account a pair of rotating particles suspended in ER
fluids. In this case, multipolar interaction should be included.
For this purpose, a multipole expansion method �31� can be
used. If there are many particles suspended in the system, the
many-body �local field� effect should also be considered. In
so doing, we can resort to an effective medium theory like
the Maxwell-Garnett approximation �32�. In addition, our
theory can also be extended to deal with other suspended
objects in shear flow, e.g., erythrocytes �33�, vesicles �34�,
etc.

To sum up, we find that the dynamic effect due to a shear
flow plays an important role in the nonlinear ac responses in
ER fluids. Our results offer a convenient method to deter-
mine the relaxation time and the rotation velocity of ER
particles, by measuring the nonlinear ac responses.
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APPENDIX A: FIFTH HARMONICS INDUCED
BY THIRD-ORDER NONLINEARITY

Fifth harmonics can appear due to third-order nonlinear-
ity. Let us start from Eq. �4�. We expand the E1 again and

FIG. 5. �Color online� Without dispersion. Same as Fig. 4, but for a dc electric field ��=0�.
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hold one more term, namely, the third one. So E1 is given by

E1 =
3e−it��+�1��1 + e2it���2

2��1 + 2�2�
E0 −

3e−it��+�1��1 + e2it���2�E1
2

2��1 + 2�2�2 E0

+
3e−it��+�1��1 + e2it���2�2E1

4

2��1 + 2�2�3 E0. �A1�

Then we put the linear part of E1 into the right-hand side of

Eq. �A1�. In view of Eqs. �1� and �3�, we get its harmonic
form

E1 = E�+�1
e−it��+�1� + E�−�1

eit��−�1� + E3�+3�1
e−3it��+�1�

+ E3�−3�1
e3it��−�1� + E�+3�1

e−it��+3�1� + E�−3�1
eit��−3�1�

+ E5�+5�1
e−5it��+�1� + E5�−5�1

e5it��−�1�

FIG. 6. �Color online� With dispersion. For an ac electric field with different angular frequencies �, the real part of the harmonic terms
of induced dipole moment P as a function of the angular velocity �1 of suspended rotating particles. Parameters: �1=20�0, �2=2.54�0,
�1=2�10−8 S/m, �2=1.0�10−13 S/m, and �E0

2=0.7�0.
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+ E3�+5�1
e−it�3�+5�1� + E3�−5�1

eit�3�−5�1�

+ E�+5�1
e−it��+5�1� + E�−5�1

eit��−5�1�, �A2�

where the harmonic coefficients are respectively given by

E�±�1
=

3�2E0

2��1 + 2�2�
,

E3�±3�1
= −

27�2
3�E0

3

8��1 + 2�2�4 ,

E�±3�1
= −

81�2
3�E0

3

8��1 + 2�2�4 ,

E5�±5�1
=

243�2
5�2E0

5

32��1 + 2�2�7 ,

E3�±5�1
=

1215�2
5�2E0

5

32��1 + 2�2�7 ,

E�±5�1
=

1215�2
5�2E0

5

16��1 + 2�2�7 . �A3�

And we expand the induced dipole moment P �Eq. �9�� by
�E1

2 to the term of �2. So P is given by

P =
a3e−it��+�1��1 + e2it����1 − �2��2

2��1 + 2�2�
E0

−
3a3e−it��+�1��1 + e2it���2

2�E1
2

2��1 + 2�2�2 E0

−
3a3e−it��+�1��1 + e2it���2

2�2E1
4

2��1 + 2�2�3 E0. �A4�

Then we put the linear part of E1 into the right part of the
equation, and expand P to get its harmonic form. So we have

P = P�+�1
e−it��+�1� + P�−�1

eit��−�1� + P3�+3�1
e−3it��+�1�

+ P3�−3�1
e3it��−�1� + P�+3�1

e−it��+3�1� + P�−3�1
eit��−3�1�

+ P5�+5�1
e−5it��+�1� + P5�−5�1

e5it��−�1�

+ P3�+5�1
e−it�3�+5�1� + P3�−5�1

eit�3�−5�1�

+ P�+5�1
e−it��+5�1� + P�−5�1

eit��−5�1�, �A5�

where the harmonic coefficients up to fifth order are given by

P�±�1
=

a3��1 − �2��2E0

2��1 + 2�2�
,

P3�±3�1
=

27a3�2
4�E0

3

8��1 + 2�2�4 ,

P�±3�1
=

81a3�2
4�E0

3

8��1 + 2�2�4 ,

P5�±5�1
= −

243a3�2
6�2E0

5

32��1 + 2�2�7 ,

P3�±5�1
= −

1215a3�2
6�2E0

5

32��1 + 2�2�7 ,

P�±5�1
= −

1215a3�2
6�2E0

5

16��1 + 2�2�7 . �A6�

APPENDIX B: FIFTH HARMONICS INDUCED
BY FIFTH-ORDER NONLINEARITY

The fifth-order harmonic terms discussed in Appendix A
are induced by third-order nonlinearity. In this section, we
shall study the effect of fifth-order nonlinearity on the fifth
harmonics. In this case, the constructive relation between the
local electric field E1 and the electric displacement D1 can be
defined as

FIG. 7. �Color online� With dispersion. Same as Fig. 6, but for a
dc electric field ��=0�, and �b� for different nonlinear characteris-
tics �E0

2.
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D1 = �1E1 + ��E1�2E1 + 
�E1�4E1 � �1̃E1, �B1�

where 
 denotes the fifth-order nonlinear coefficient. Similar
to the definition �E1�2=E1 ·E1, we adopt the definition �E1�4
= �E1 ·E1��E1 ·E1�.

Comparing with Eq. �2�, it is not difficult to derive the
contribution of 
 to each harmonic terms. In this case, the
local electric field inside a particle is given by

E1 =
3�2

�1 + �E1
2 + 
E1

4 + 2�2
Ef . �B2�

And we expand E1 by �E1
2 and 
E1

4. So we have

E1 =
3e−it��+�1��1 + e2it���2

2��1 + 2�2�
E0 −

3e−it��+�1��1 + e2it���2�E1
2

2��1 + 2�2�2 E0

−
3e−it��+�1��1 + e2it���2
E1

4

2��1 + 2�2�2 E0. �B3�

Then the substitution of the linear part of E1 into Eq. �B3�
yields

E1 =
3e−it��+�1��1 + e2it���2E0

2��1 + 2�2�

−
27e−3it��+�1��1 + e2it��3�2

3�E0
3

8��1 + 2�2�4

−
243e−5it��+�1��1 + e2it��5�2

5
E0
5

32��1 + 2�2�6 . �B4�

By expanding this equation, we get E1 in the form of har-
monics:

E1 = E�+�1
e−it��+�1� + E�−�1

eit��−�1� + E3�+3�1
e−3it��+�1�

+ E3�−3�1
e3it��−�1� + E�+3�1

e−it��+3�1� + E�−3�1
eit��−3�1�

+ E5�+5�1
e−5it��+�1� + E5�−5�1

e5it��−�1�

+ E3�+5�1
e−it�3�+5�1� + E3�−5�1

eit�3�−5�1�

+ E�+5�1
e−it��+5�1� + E�−5�1

eit��−5�1�, �B5�

where the harmonic coefficients are given by

FIG. 8. �Color online� With
dispersion. Same as Fig. 6, but for
a dc electric field ��=0�, and for
different �a� �̄1, �b� �̄1, and �c� �̄2.
Parameters: �1=20�0, �2=2.5�0,
�1=2�10−8 S/m, �2=1.0
�10−13 S/m, and �E0

2=0.7�0, if
they are not the variables.

TABLE I. List of � and �1
*. Here � was calculated according to

Eq. �24� and �1
* was extracted from the curves of Fig. 8. The two

parameters satisfy ��1
*=1 �Eq. �23��.

� �s� �1
* �rad/s�

�̄1=2�10−8.2 S /m 0.0156 64.1

2�10−8 S/m 0.0099 101.7

2�10−7.8 S /m 0.0062 161.1

�̄1=15�0 0.0078 127.1

20�0 0.0099 101.7

25�0 0.0118 84.7

�̄2=2.2�0 0.0096 104.2

2.5�0 0.0099 101.7

2.8�0 0.0101 99.3
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E�±�1
=

3�2E0

2��1 + 2�2�
,

E3�±3�1
= −

27�2
3�E0

3

8��1 + 2�2�4 ,

E�±3�1
= −

81�2
3�E0

3

8��1 + 2�2�4 ,

E5�±5�1
= −

243�2
5
E0

5

32��1 + 2�2�6 ,

E3�±5�1
= −

1215�2
5
E0

5

32��1 + 2�2�6 ,

E�±5�1
= −

1215�2
5
E0

5

16��1 + 2�2�6 . �B6�

With the dielectric constant �1̃ given by Eq. �B1�, the in-
duced dipole moment is written as

P = �2
�1 + �E1

2 + 
E1
4 − �2

�1 + �E1
2 + 
E1

4 + 2�2
a3Ef . �B7�

Then we expand P by �E1
2 and 
E1

2, so we get

P =
a3e−it��+�1��1 + e2it����1 − �2��2

2��1 + 2�2�
E0

+
3a3e−it��+�1��1 + e2it���2

2�E1
2

2��1 + 2�2�2 E0

+
3a3e−it��+�1��1 + e2it���2

2
E1
4

2��1 + 2�2�2 E0. �B8�

Now the linear term of E1 is introduced into the equation
above. So P is given by

P =
a3e−it��+�1��1 + e2it����1 − �2��2E0

2��1 + 2�2�

+
27a3e−3it��+�1��1 + e2it��3�2

4�E0
3

8��1 + 2�2�4

+
243a3e−5it��+�1��1 + e2it��5�2

6
E0
5

32��1 + 2�2�6 . �B9�

We expand Eq. �B9� to get P in the terms of harmonics:

P = P�+�1
e−it��+�1� + P�−�1

eit��−�1� + P3�+3�1
e−3it��+�1�

+ P3�−3�1
e3it��−�1� + P�+3�1

e−it��+3�1� + P�−3�1
eit��−3�1�

+ P5�+5�1
e−5it��+�1� + P5�−5�1

e5it��−�1�

+ P3�+5�1
e−it�3�+5�1� + P3�−5�1

eit�3�−5�1�

+ P�+5�1
e−it��+5�1� + P�−5�1

eit��−5�1�, �B10�

where the harmonic coefficients are

P�±�1
=

a3��1 − �2��2E0

2��1 + 2�2�
,

P3�±3�1
=

27a3�2
4�E0

3

8��1 + 2�2�4 ,

P�±3�1
=

81a3�2
4�E0

3

8��1 + 2�2�4 ,

P5�±5�1
=

243a3�2
6
E0

5

32��1 + 2�2�6 ,

P3�±5�1
=

1215a3�2
6
E0

5

32��1 + 2�2�6 ,

P�±5�1
=

1215a3�2
6
E0

5

16��1 + 2�2�6 . �B11�
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